Extensions 1→N→G→Q→1 with N=C32 and Q=C3xC15

Direct product G=NxQ with N=C32 and Q=C3xC15
dρLabelID
C33xC15405C3^3xC15405,16

Semidirect products G=N:Q with N=C32 and Q=C3xC15
extensionφ:Q→Aut NdρLabelID
C32:(C3xC15) = C15xHe3φ: C3xC15/C15C3 ⊆ Aut C32135C3^2:(C3xC15)405,12

Non-split extensions G=N.Q with N=C32 and Q=C3xC15
extensionφ:Q→Aut NdρLabelID
C32.1(C3xC15) = C5xC3wrC3φ: C3xC15/C15C3 ⊆ Aut C32453C3^2.1(C3xC15)405,7
C32.2(C3xC15) = C5xHe3.C3φ: C3xC15/C15C3 ⊆ Aut C321353C3^2.2(C3xC15)405,8
C32.3(C3xC15) = C5xHe3:C3φ: C3xC15/C15C3 ⊆ Aut C321353C3^2.3(C3xC15)405,9
C32.4(C3xC15) = C5xC3.He3φ: C3xC15/C15C3 ⊆ Aut C321353C3^2.4(C3xC15)405,10
C32.5(C3xC15) = C15x3- 1+2φ: C3xC15/C15C3 ⊆ Aut C32135C3^2.5(C3xC15)405,13
C32.6(C3xC15) = C5xC9oHe3φ: C3xC15/C15C3 ⊆ Aut C321353C3^2.6(C3xC15)405,14
C32.7(C3xC15) = C5xC32:C9central extension (φ=1)135C3^2.7(C3xC15)405,3
C32.8(C3xC15) = C5xC9:C9central extension (φ=1)405C3^2.8(C3xC15)405,4

׿
x
:
Z
F
o
wr
Q
<